What are the maximum number of electrons in each shell?

The pattern of maximum possible electrons = $2n^2$ is correct.

Also, note that Brian’s answer is good and take a different approach.

Have you learned about quantum number already?

そうでなければ…

各殻(またはエネルギーレベル)にはいくつかの副殻があり、これはその副殻内の電子が利用できる原子軌道の種類を記述しています。 例えば、どのエネルギー準位でも $s$ 副殻は球状の軌道で構成されています。 p$ 副殻は、ダンベル型の軌道を持つ。 それ以降は、軌道の形がおかしくなってきます。 各副殻には決められた数の軌道があり、各軌道には2個の電子を保持することができる。 1つの殻に含まれる部分殻の種類と軌道の数は、量子数によって数学的に定義されています。 量子数とは、各電子を記述する波動方程式のパラメータである。 パウリ排他原理により、同じ原子に存在する2つの電子が全く同じ量子数を持つことはない。 量子数を用いたより詳細な説明は、以下をご覧ください。 ただし、結果は次のようになります:

副殻は次のようになります。

  • $s$サブシェルは1つの軌道を持ち、合計2個の電子を持つ
  • $p$サブシェルは3つの軌道を持ち、合計6個の電子を持つ
  • $d$サブシェルは5つの軌道を持ち、合計10個の電子を持つ $f$副殻は7つの軌道で合計14電子
  • $g$副殻は9つの軌道で合計18電子
  • $h$副殻は11の軌道で合計22電子

など。

各エネルギー準位(殻)は、利用できる副殻の数が増える。

  • 第一殻は$s$副殻のみで、$s$電子は2個
  • 第二殻は$s$と$p$副殻を持ち$2 + 6 = 8電子
  • 第三殻は$s$と$p$副殻を持ち$s$電子は1個。 p$, and $d$ subshells $implies$ 2 + 6 + 10 = 18 electrons
  • The fourth shell has $s$, $p$, $d$, and $f$ subshells $implies$ 2 + 6 + 10 + 14 = 32 electrons
  • The fifth shell has $s$, $p$, $d$, $f$, and $g$ subshells $implies$ 2 + 6 + 10 + 14 + 18 = 50 electrons
  • The sixth shell has $s$, $d$ and $s$ subhells $2, p$, $d$, $f$, $g$, and $h$ subshells $implies$ 2 + 6 + 10 + 14 + 18 + 22 = 72 electrons

The pattern is thus: 2, 8, 18, 32, 50, 72, …$ または $2n^2$

実際には、$g$ または $h$ 副殻に電子を持つ原子は知られていないが、量子力学モデルはその存在を予言するものである。

なぜ殻がそのような副殻を持つのか、なぜ副殻がそのような軌道の数を持つのか、量子数を用いて説明する。

原子の電子は4つの量子数で定義される。 パウリ排他原理により、2つの電子が同じ量子数を共有することはできません。

量子数:

  • $n$, 主量子数は殻を定義する。 n$の値は整数で、$n=1,2,3,…$
  • $ell$は軌道角運動量量子数で、副殻を定義する。 この量子数によって、電子が存在する軌道の形(確率密度)が定義される。 磁気量子数$m_{ell}$は、軌道の空間的な向きを定義する量子数で、$n$に依存する整数値である。 また、この量子数によって、副殻ごとの軌道の数も決定される。 m_s$は整数で、$m_ell$の値に依存します。$m_ell = -┣┣,-1,0,1,…,+┣$8497>
  • $m_s$, spin angular momentum quantum numberは、各電子のスピン状態を決定する数で、$m_el$, $ell$, $rel$、$rel$、$ell$の3種類あります。 スピンの許容値は2つだけなので、1つの軌道に2個の電子しか存在できない。 m_s$の値は$m_s=pm \frac{1}{2}$

第一殻では$n=1$なので、$sell$の値は1つだけ許されることになります。 s$ 副殻である$ell=0$です。 このとき、$m_elle=0$だけが許される。 したがって、$s$サブシェルは軌道が1つしかない。

第二殻の場合、$n=2$なので、$ell$の許容値は以下のようになります。 この場合、$s$殻は$ell=0$、$p$殻は$ell=1$となります。 このとき、$m_intell$の値は$m_intell=-1,0,+1$の3つである。 このように$p$補助殻は3つの軌道を持つ。 第2殻は2つの副殻を持つ。$s$副殻は1軌道で2電子、$p$副殻は3軌道で6電子、合計4軌道で8電子である。

第3殻は$n=3$なので、$seeell$の許容値は次のようになる。 n=3$なので、$ell=0$で$s$サブシェル、$ell=1$で$p$サブシェル、$ell=2$で$d$サブシェルとなります。 2$の場合、$m_intell$は$m_intell=-2,-1,0,+1,+2$の5つの値をとりうる。 したがって、$d$補助殻は5つの軌道を持つ。 第3殻には3つの副殻があり、$s$副殻は1軌道で2電子、$p$副殻は3軌道で6電子、$d$副殻は5軌道で10電子で、合計9軌道で18電子である。 s$ 副殻の$ell=0$、$p$副殻の$ell=1$、$d$副殻の$ell=2$、$f$副殻の$ell=3$です。 3$の場合、$m_intell$は$m_intell=-3,-2,-1,0,+1,+2,-3$の7つの値をとりうる。 したがって、$f$サブシェルは7つの軌道を持つ。 第4殻には4つの副殻があり、$s$副殻は1軌道で2電子、$p$副殻は3軌道で6電子、$d$副殻は5軌道で10電子、$f$副殻は7軌道で14電子、合計16軌道で32電子を持つことになる<1982>。

コメントを残す

メールアドレスが公開されることはありません。