一次方程式のグラフ化

2変数の一次方程式のグラフは直線です(だから一次方程式と呼ぶのです)。

方程式が一次方程式であることがわかれば、

( x 1 , y 1 ) と ( x 2 , y 2 ) の2つの解を求め、

この2点をプロットし、それらを結ぶ線を描けば、グラフにすることができます。

例1:

方程式 x + 2 y = 7 をグラフにせよ。

最初に x = 0、次に y = 0 を設定すれば、グラフの x -切片と y -切片に対応する2つの解を見つけることができます。

x = 0 のとき、次のようになります。

0 + 2 y = 7 y = 3.5

y = 0 のとき、次が得られます。

x + 2 ( 0 ) = 7 x = 7

従って、2点は ( 0 , 3.5 ) と ( 7 , 0 ) であることがわかる。

この2点をプロットして、それらを結ぶ直線を引きます。

方程式がslope-intercept形式またはpoint-slope形式であれば、傾きを使ってグラフ化することもできます。

例題2.

直線y = 3 x + 1をグラフにします。

方程式から、y -切片は1、点( 0 , 1 )、傾きは3であることがわかる。 点( 0 , 1 )をグラフにし、そこから3単位上へ、1単位右へ移動して2点目をグラフにする。 両方の点を含む直線を引きなさい。

水平線と垂直線は余分な簡単な方程式を持つ。

例3:

水平線:y=3

垂直線:x=-2

<402> <8878

コメントを残す

メールアドレスが公開されることはありません。